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The application of Lighthill’s acoustic analogy to the generation of sound by rotating 
surfaces with supersonic speeds results in radiation integrals in which the stationary 
points of the phase function - that describes the space-time distance between each 
source point and a fixed observation point - have variable positions and coalesce at a 
caustic in the space of source points. Here, the leading term in the asymptotic 
expansion of the corresponding Green’s function at this caustic is calculated, both in 
the time and the frequency domains, and it is shown that the radiation generated by 
volume sources, which are steady in the uniformly rotating blade-fixed frame, has an 
amplitude that does not obey the spherical spreading law, i.e. does not fall off like Rpl 
with the radial distance R, away from the source. Within a finite solid angle, depending 
on the extent of the source distribution, the amplitude of this newly identified sound 
decays like R;;, so that it is stronger in the far field than any previously studied element. 
That this is not incompatible with the conservation of energy is because the emission 
time intervals associated with the volume elements of the source distribution which 
contribute towards the non-spherically decaying component of the radiation are by a 
large (R,-dependent) factor greater than the time intervals during which the signals 
generated by these elements are received. The contributing source elements are those 
whose positions at the retarded time coincide with the locus of singularities of the 
Green’s function, i.e. with the one-dimensional locus of points, fixed in the rotating 
frame, which approach the observer with the wave speed and zero acceleration along 
the radiation direction. Because the signals received at two neighbouring instants in 
time arise from distinct, coherently radiating filamentary parts of the source which 
have both different extents and different strengths, the resulting overall waveform in 
the far zone consists of the superposition of a (continuous) set of narrow subpulses 
with uneven amplitudes. These subpulses are narrower the larger the distance from the 
source. 

The differences between the new results and those of the earlier works in the 
literature are shown to arise from the error terms in the far-field and high-frequency 
approximations, approximations that are inappropriate for volume sources moving 
supersonically. 

1. Introduction 
It is known, in the context of the sonic boom, that the amplitude of the acoustic 

radiation generated by a rectilinearly moving supersonic source falls off with the radial 
distance R, from the source like R;;, rather than Rpl, on the Mach cones which issue 
from the constituent volume elements of the source (Whitham 1974, p. 227; Dowling 
& Ffowcs Williams 1983, p. 196; see also Appendix A). This notwithstanding, the 
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existing analyses in the literature of the acoustic radiation from rotating supersonic 
sources are based, almost without exception, on the standard far-field approximation 
to the retarded solution of the wave equation according to which the sound decays 
spherically, i.e. like Rpl (see e.g. Hawkings & Lowson 1974; Hanson & Fink 1979; 
Farassat 1981; Tam, Salikuddin & Hanson, 1988; Crighton & Parry 1991; Peake & 
Crighton 1991 a, b;  the only exceptions known to the author are the works of Ffowcs 
Williams & Hawkings 1969; and Myers & Farassat 1987). We shall see in this paper 
that in the case of a (hovering) rotor with a supersonic tip speed, too, the radiation that 
arises from volume-distributed sources decays cylindrically in the linear regime? : it 
falls off like R;; within a wide range of colatitudes, satisfying cosec 8, < r,, w / c ,  on both 
sides of the plane of rotation (8, = +IT), where r,, and w are respectively the radius and 
the (constant) angular velocity of the rotor, and c is the speed of sound in the 
undisturbed medium. 

This decay rate can in fact be established without a knowledge of the values of the 
various source terms in the Ffowcs Williams-Hawkings equation; the only feature of 
the source distribution that dictates this, as well as the other results of the present paper, 
is that it is steady in the blade-fixed rotating frame, i.e. that the flow variables that enter 
the expression for its density s are functions of the azimuthal angle ‘p and the time t in 
the combination ‘p - wt = @ only. The assumption central to an important part of rotor 
acoustics, that the flow in the blade-fixed frame is steady, implies that the source 
distribution has a rigidly rotating pattern from the point of view of an observer in the 
inertial frame, irrespective of what the dependence of s on the cylindrical coordinates 
(r,@,z) of the blade-fixed frame may be. Even though the fluid motion around the 
rotor, which creates the source with the density s, has velocities that are much smaller 
than that of sound when the rotor blade is thin, the phase velocity of the pattern 
associated with the source distribution exceeds c beyond the sonic cylinder r = c/w.  It 
is the supersonic propagation, around the rotation axis, of this pattern that determines 
the Green’s function for the relevant version of the Ffowcs Williams-Hawking’s 
equation and so underlies the explanation for a host of phenomena in rotor acoustics 
(see Ardavan 1991 a, b). 

The convolution of the Green’s function in question, the spiral Green’s function - 
which is simply the sound generated by a source point in circular motion - with the 
density s(r, @, z )  of the source distribution in the blade-fixed frame results in a sound 
amplitude that is the same as what one would obtain by superposing the contributions 
from the circularly moving volume elements of a source in rigid rotation (see $2). We 
shall from now on refer to the volume elements of this rigidly rotating source 
distribution simply as ‘source elements ’ or ‘source points ’. 

Just as the spherical field wavelets emanating from a rectilinearly moving supersonic 
point source would form a Mach cone at which the field is infinite, so the envelope of 
the corresponding wavelets from a circularly moving supersonic point source 
constitutes a caustic at which the spiral Green’s function diverges. (These amplitudes 
are infinitely large for a source that is point-like, but they are finite for an infinitesimal 
volume element of an extended source.) This caustic begins issuing from the point 
source in the form of a cone with the same opening angle as that of a Mach cone and, 
after joining a second sheet, eventually develops into a tube-like surface which spirals 
around the rotation axis (see figure 1). The two sheets of the caustic are tangent to one 
another and so form a cusp where they meet. The resulting cusp is a distorted U-shaped 

t We shall be concerned only with the linear theory in this paper; it will, in due course, be possible 
to incorporate the modifications that arise from nonlinear effects with the use of the techniques 
developed by Whitham (1974) and Lighthill (1993). 
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FIGURE 1. The envelope of the spherical field wavelets emanating from a supersonically moving source 
point in circular motion. The heavier curves show the cross-section of the envelope with the plane of 
the orbit of the source. The larger of the two broken circles designates the orbit and the smaller the 
sonic cylinder r = c / w .  

FIGURE 2. Cross-sections of the caustic (the envelope shown in figure 1) with a set of equidistant 
planes parallel to the plane of the orbit. The contours shown as broken lines belong to the sheet $+ 
of this surface which is here hidden underneath the sheet $-. The cusp curve - along which the two 
sheets of the caustic meet and are tangent to one another - is designated by dots and dashes, and the 
sonic cylinder by a broken circle. The two-sheeted, tube-like surface shown here is symmetric with 
respect to the plane of the orbit. 

curve whose two segments run along the two sides of the spiralling tube-like surface 
from the point on the sonic cylinder where the cone becomes a tube to infinity. (See 
figure 2 and the figures in Lilley et al. 1953; da Costa & Kahn 1985; Ardavan 1989). 

In the rectilinear case, the source points that influence the sound field at a given 
observation point P are only those that lie within an inverted Mach cone issuing from 
P (see figure 1 in Ardavan 1991 a). What plays the role of the inverted Mach cone in 
the present case is a surface in the ( r ,  @, z)-space of source points that has the same 
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FIGURE 3. The bifurcation surface associated with a near-field observation point P. Only the cross- 
section of this surface with its plane of symmetry z = z ,  is shown. The curve designated by dots and 
dashes is the projection of the cusp curve of the bifurcation surface onto this plane. The different 
sheets, qhk, of the bifurcation surface are identified, and the sonic cylinder (the circle) and the point 
of tangency of the cusp curve with the sonic cylinder (point C) are also shown. When the observation 
point is placed in the far zone (?, % 1, zp  % z) ,  the spiralling surface that issues from P undergoes a 
large number of turns -in which its two sheets intersect one another - before reaching the sonic 
cylinder. (The motion of the source is counterclockwise.) 

shape and points in the same direction as the reflection of the caustic described above 
- which resides in the ( rp ,  @,, 2,)-space of the observation points - across the 
meridional plane @ = GP passing through its conical apex P. This surface, which is 
shown in figure 3, will be here referred to as the bifurcation surface associated with the 
observation point P. The source points lying inside this surface influence the field 
observed at its apex via waves that, though received simultaneously, were emitted at 
- at least - three different values of the retarded time, but the source points outside this 
surface influence the field via a single wave. The number of contributing retarded times 
can be more than three when the speed of the point source is appreciably greater than 
c (see da Costa & Kahn 1985). The points on the bifurcation surface approach the 
observer with the speed of sound along the radiation direction and so are sources of 
constructively interfering waves that not only arrive at P simultaneously but were 
emitted over a short time interval from one another, an interval in which the rates of 
change of their retarded times - as functions of the observation time - diverge. 
Amongst these, the points on the cusp curve (figure 4), which at the same time 
approach the observer with zero acceleration along the radiation direction, represent 
the source points for which the singularity of the spiral Green’s function at P is worst, 
i.e. the focusing of the rays that form a caustic at P is sharpest.? 

We shall demonstrate that the contributions towards the sound at any given point 
in the far zone that do not decay spherically are made by those source elements that, 
at the retarded time, were located in the vicinity of the cusp curve of the bifurcation 

t In this paper we use the terminology of geometrical acoustics (rays, caustics, focusing, etc.) not 
in the narrow sense in which ray theory is an approximation to wave theory, but in the sense used 
by Courant & Hilbert (1962) and Friedlander (1958): certain aspects of the solutions to any second- 
order hyperbolic partial differential equation are described by the first-order partial differential 
equation (the eikonal equation) and the ordinary differential equations (the ray equations) which 
govern the characteristics and bicharacteristics of the original equation (see 96 of Ardavan 1989). 
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FIGURE 4. Position of the cusp curve of the bifurcation surface, designated by dots and dashes, in 
relation to those of the sonic cylinder i = 1 and the symmetry plane z = z p  for a near-field observation 
point P (schematic). The point Ca t  which this cusp curve touches, and is tangent to, the sonic cylinder 
lies in the plane of symmetry containing P. As the observation point is moved towards the far-field, 
point C rotates through a large angle - of the order of r”, - about the sonic cylinder, and the segments 
of the cusp curve that lie away from C tightly wind around a second cylinder with the radius i = cosec 
O P  (see (47) and (75)). (The motion of the source is counterclockwise.) 

surface associated with that observation point ($94 and 5). For this reason, we begin 
the presentation of our analysis by deriving an asymptotic approximation to the spiral 
Green’s function at its caustic (the cusp curve of the bifurcation surface) both in the 
frequency and the time domains ($3). Each Fourier component of the spiral Green’s 
function is given by an integral involving an exponential function (see equation (17) 
below) whose phase has two stationary points occurring on the two sheets of the 
bifurcation surface. Because these stationary points have positions that depend on the 
coordinates of the source point and coincide for source elements that lie on the cusp 
curve, the asymptotic expansion of the spiral Green’s function cannot be obtained by 
the method of stationary phase; though generally applicable to cases in which the 
stationary points are isolated, this method does not yield a uniformly valid result in the 
range of parameters where the stationary points approach one another and coalesce. 
To handle the present problem, a more accurate technique is required in which the 
phase of the integral in question is transformed into a cubic function (cf. Chester, 
Friedman & Ursell 1957; Ludwig 1966; Bleistein & Handelsman 1986), rather than 
approximated by a quadratic one. The leading term in the resulting asymptotic 
expansion of the integral is then seen to arise from the locus at which the stationary 
points of the phase function coalesce. 

A generalization of this technique (cf. Myers & Farassat 1987) also yields the 
asymptotic behaviour of the spiral Green’s function at its caustic in the time domain 
(9 3). The parameter, playing the role of wavelength, which should in this case approach 
zero for the expansion to hold is the distance of the source point from the cusp curve 
of the bifurcation surface (or the distance of the observation point from the cusp curve 
of the caustic surface). 

To emphasize the role played by the source elements at the cusp curve of the 
bifurcation surface, we have based the asymptotic expansion of the sound field in the 
frequency domain ($4) on both the exact and the asymptotic forms of the spiral Green’s 
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function. This calculation shows that the leading term in the asymptotic expansion of 
the sound for large frequency (i.e. high harmonics of the rotation frequency w )  comes 
from a single point on the cusp curve of the bifurcation surface - point C in figure 4 
-and is sharply beamed into the rotation plane containing the blade. It shows, 
moreover, that the leading contribution to the sound amplitude decays cylindrically, 
i.e. like R$, for values of R, that do not exceed the Rayleigh distance, and has a 
spectrum that, in contrast to that of the emission from subsonic sources, falls off like 
m-; with the harmonic number m, rather than exponentially. 

The fact that the range of validity of the calculation in $4 is limited by the 
requirement that the Rayleigh distance should exceed the distance of the observer from 
the source does not imply that the cylindrically decaying component of the radiation 
is composed of the higher harmonics of the rotation frequency exclusively. The 
condition on the Rayleigh parameter also appears when the decay rate of Mach waves 
from a finite-duration rectilinearly moving supersonic source is analysed in the 
frequency domain, whereas it is known from the time-domain analysis of the same 
problem that the cylindrical decay of Mach waves is independent of frequency (see 
Appendix A). In $5 ,  we use the asymptotic expansion of the spiral Green’s function at 
its caustic, in the time domain, to calculate the contribution towards the sound field of 
those source elements within the bifurcation surface that lie in the neighbourhood of 
one of the sheets of this surface, close to its cusp curve. The leading term in the resulting 
asymptotic expansion of the sound field confirms that not merely the high-frequency 
Fourier components of the sound, but the sound level itself, decays cylindrically, and 
that this result is a consequence solely of the behaviour of the spiral Green’s function 
at its caustic - i.e. of the radiation efficiency of the volume elements of the source that 
approach the observer with the wave speed and zero acceleration along the radiation 
direction - rather than of any specific properties of the steady source distribution in the 
blade-fixed frame. 

The component of the radiation whose amplitude decays like R;; is present at any 
observation point in the far zone for which the cusp curve of the bifurcation surface 
intersects the source distribution. From the shape of the cusp curve, it can thus be 
inferred that the latitudinal width of the radiation beam generated by a source 
distribution whose supersonic portion extends from the sonic cylinder to r = ro > c / w  
is given by the range of angles satisfying cosec 8, < r 0 w / c  (see $6). The longitudinal 
width of the overall radiation beam simply equals the longitudinal extent of the source 
distribution: a shift A@, in the azimuthal position of any observation point results in 
an equal shift A+ in the azimuthal position of the cusp curve associated with that 
observation point. Because, as we move away from the source, the area subtended by 
the solid angle into which this component of the radiation is beamed increases like Rg, 
while the flux density of the radiation decreases like Rpl, it might at first seem that the 
flux of energy is not the same across spheres of different radii enclosing the source. This 
apparent incompatibility with the conservation of energy, however, is resolved once we 
also take into account the fact that the emission time intervals associated with the 
volume elements of the source distribution that contribute towards this component of 
the radiation are by a large (&,-dependent) factor greater than the time intervals 
during which the signals generated by these source elements are received. 

For a point source that approaches the observer with the speed of sound along the 
radiation direction, a finite interval of retarded time is Doppler shifted to a vanishing 
interval of observation time. For those volume elements of an extended source that do 
not lie right on the bifurcation surface, the emitted wave fronts do not crowd together 
to such an extent that the ratio of the observation to the emission time intervals 
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vanishes exactly. Nevertheless, the ratio in question has exceedingly small RP- 
dependent values for the filamentary part of the source along the cusp curve of thls 
surface that radiates coherently and so gives rise to the non-spherically decaying 
component of the radiation. The inverse square-root singularity of the leading term in 
the asymptotic expansion of the Green’s function at its caustic - which arises from the 
vanishing of the Doppler factor in question-shows that for the source points 
neighbouring the cusp curve the ratio of the observation to the emission time intervals 
approaches zero like the square root of their distance from the bifurcation surface. 
When we integrate the Green’s function over a neighbourhood of the cusp curve, we 
find that the contribution arising from its singularity introduces an extra factor of R;; 
into the expression for the sound strength that would have been absent had the 
Doppler factor been non-vanishing ($5) .  

The analysis itself makes it clear, therefore, that it is the Doppler contraction of the 
duration of the signal that is responsible for its cylindrical decay, i.e. for altering the 
R,-dependence of its amplitude from R;’ to R$ (see equation (70) below). That the 
modifying factor should be R;;, rather than R; with a different value of 01, is a 
consequence of the fact that the spiral Green’s function has an inverse square-root 
singularity at its caustic ($3). In turn, that the spiral Green’s function should have an 
inverse square-root singularity, as does the Green’s function for a two-dimensional 
wave equation, is a consequence of the fact that the symmetry a/at  = - w a/&p reduces 
the spatial dimension of the wave equation that governs the present problem from 
three to two: the mathematical structure of the equation governing the present 
problem is precisely the same as that of the equation that governs (two-dimensional) 
axisymmetric waves in a non-homogeneous medium ($8). 

Owing to the above symmetry, what is observed as a short-duration signal in the 
stationary inertial frame appears as a longitudinally narrow waveform in the blade- 
fixed rotating frame. The fact that the ratio of the observation to emission time 
intervals is smaller the further away we move from the source thus implies that the 
longitudinal width of the radiation beam that is generated by the filamentary locus of 
volume elements at the intersection of the cusp curve with the source distribution is 
narrower the larger R, is. So, the requirements of the conservation of energy are met 
at this level by virtue of the fact that the enhancement of the flux density of energy at 
the position of the observer is compensated by a corresponding reduction in the size 
of the area subtended by the radiation beam of the individual filament which acts as 
a source ($6). This is essentially how the systems that generate non-spherically 
diverging isolated wave packets, known as acoustic or electromagnetic ‘missiles’ 
(Myers et al. 1990), conserve their energy (see also Ffowcs Williams & Guo 1988; 
Ffowcs Williams 1993 a, b). 

Because any change in the position of the observation point changes the segment 
along which the cusp curve of the bifurcation surface intersects the source distribution, 
the signals received at two neighbouring points in the blade-fixed frame arise from 
filaments that have both different extents and different strengths. The overall waveform 
received in the far zone thus consists of a continuous set of narrow ‘spiky’ signals 
(subpulses) with uneven and fluctuating amplitudes, whose pattern of subpulse 
structure changes radically as the distance R, changes. Were it not for this fact, the 
results of $95 and 6 would have suggested that volume-distributed sources should be 
regarded as the linear superposition of a (continuous) collection of independent 
filamentary sources each of which - in addition to emitting the ordinary spherically 
spreading radiation - generated a directed cylindrically decaying subpulse of dim- 
inishing duration. However, the filamentary sources in question do not - like ordinary 
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sources - have an identity that is independent of the observation point and, in general, 
no two subpulses within the waveforms that are observed at different distances have 
identical filaments as their sources. 

For this reason, the results of $55 and 6 do not provide any information about the 
evolution of the subpulses of a waveform in the course of their propagation from the 
source to the observation point. They merely imply that the generated waveform is 
more ‘spiky’ the larger the distance at which it is observed. On the other hand, this 
feature alone suffices to explain how the solid angle occupied by the overall radiation 
beam remains independent of R, without violating the conservation of energy. Even 
though the flux density of energy associated with a typical subpulse differs from its 
near-field value by the factor Rpl, the change in the microstructure of the waveform 
with increasing distance from the source alters the distribution of the flux density of 
energy over the cross-sectional area of the overall radiation beam in such a way that 
the integral of this flux density over the surface of a sphere enclosing the source 
becomes independent of R,. That this should be so is dictated by the fact that the 
retarded solution of the wave equation, from which the cylindrical decay of the 
subpulses is derived, is manifestly compatible with the conservation of energy as far as 
the wave energy that is emitted by the entire source is concerned. 

Section 7 of the paper is devoted to a discussion of the differences between the 
present results and those of the earlier works on rotor acoustics. A basic feature of 
published treatments of the present problem is that they are all based - in most cases 
implicitly - on various approximations to the expression for a Fourier component of 
the spiral Green’s function. We have therefore begun in 97 by deriving the far-field and 
the high-frequency approximations to the spiral Green’s function in the frequency 
domain, and comparing the resulting expressions to the leading term in the asymptotic 
expansion of this function at its caustic. Since the spiral Green’s function is a 
discontinuous function, and so its spectrum extends to high harmonics of the rotation 
frequency, the sound amplitude that follows from the high-frequency approximation 
to this function is in fact identical to the cylindrically decaying amplitude predicted by 
the leading term in the asymptotic expansion of 94. The far-field limit of the high- 
frequency approximation to the spiral Green’s function, however, misrepresents the 
site of emission: it implies that the main contribution to the high-frequency sound 
field in the far zone arises from the source elements on the cylindrical surface 
Y = ccosecO,/w, rather than from the source elements on the cusp curve of the 
bifurcation surface which is a curve belonging to this cylinder. 

When we introduce the far-field approximation first, we obtain an expression for the 
spiral Green’s function that not only misrepresents the site of emission in the high- 
frequency limit, but in fact obliterates the non-spherically decaying component of the 
radiation altogether. The exact expression for the spiral Green’s function (equation (7) 
below) involves a phase whose two nearby stationary points coalesce as the source 
point approaches the cusp curve of the bifurcation surface. In the far-field 
approximation, this phase function is replaced by the first two terms in its Taylor 
expansion in powers of ~x~/~x,~ ,  where x and x p  are the position vectors of the source 
point and the observation point, respectively. Unless some of the higher-order terms 
in this Taylor expansion are also retained, however, the resulting expression would not 
be an exact enough representation of the phase of the spiral Green’s function for the 
effects described in this paper to show up. To extract the cylindrically decaying 
component of the radiation, whose existence is intimately connected with the focusing 
of rays and so the coalescing of the stationary points of the phase function in question, 
it is essential that the phase of the integrand in the integral defining the spiral Green’s 
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function is (as in $3) transformed into, or at least approximated by, a cubic function 
of the variable over which it extends, and that the coefficients of this cubic function are 
only simplified by means of approximations that remain uniformly valid at the source 
points where its extrema coalesce (see $7). Because the present problem entails the 
formation of caustics, its analysis requires a more exact solution of the wave equation 
than that supplied by the far-field approximation to the retarded potential; to base the 
analysis on such a solution is simply tantamount to limiting the type of phenomena 
that can be described. 

It is, in addition, essential that account is taken of the contribution from the volume 
distribution of quadrupole sources; none of the features described above can, in 
general, appear in the radiation from surface source distributions ($8). In $8 we also 
briefly comment on the practical implications of the paper’s results and point out how 
the breaking of the symmetry of the flow can, in principle, suppress the noise in the far 
zone. 

2. Formulation of the problem: the spiral Green’s function 
The generation of sound by a rigid body in arbitrary motion through a fluid is 

governed by the following wave equation, known as the Ffowcs Williams-Hawkings 
equation, which is an exact consequence of the conservation laws for mass and 
momentum : 

where p and p i j  are the deviations of the density and the stress tensor of the ambient 
fluid from their mean values po and po  I&, the constant c is the mean value of the speed 
of sound, u is the local velocity with which the surface of the body encroaches on the 
fluid, and Ax, t )  = 0 defines the surface of the moving body with f < 0 inside and 
f > 0 outside the body. The tensor qj = (p, +p) ui uj +pi j  -pc26,, in which u stands for 
the fluid velocity, is Lighthill’s stress tensor. In these expressions x is the position 
vector, t is time, O(f), So and Sij are the Heaviside step function and the Dirac and 
Kronecker delta functions, respectively, and the indices i and j designate Cartesian 
components of tensors that are to be summed over the values 1,2 and 3 when repeated. 

Equation (1) is a nonlinear equation because, even though the source term in this 
equation is known to within the zeroth order in the perturbation quantities, a 
knowledge of the exact value of s requires knowledge of the flow field and so of the 
solution itself. Nevertheless, it is possible to use the retarded Green’s function for the 
linear wave equation in unbounded space to rewrite (1) formally as 

P(x,, tP) = d3x dts(x, t )  &(t - t ,  + R/c ) /R ,  (3) 

where (x,, tP) and (x, t )  denote the coordinates of the observation and the source 
points, respectively, R stands for Ix-xpl, and the integral extends over all space-time. 

When the body in question is a hovering blade with no forward velocity and its 
motion consists of a rigid rotation about a fixed axis with a constant angular frequency 
w ,  the quasi-steady sources of sound whose strengths do not vary with time in the 
blade-fixed coordinates are thought to be most important (see Hawkings & Lowson 

s 
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1974), and we are concerned with flow variables which depend on the azimuthal angle 
v and the time t as functions of the single variable q - w t .  Thus for that part of rotor 
acoustics, in which p, f and the cylindrical components of u, u and pii possess the 
symmetry i3/tlt+wtl/&p = 0, the source term of (1) has the form 

where the z-axis of the cylindrical polar coordinates ( r ,  q ~ ,  z )  is defined by the axis of 
rotation. (This can be seen by transforming the partial derivatives with respect to the 
Cartesian coordinates that appear in (2) into covariant derivatives with respect to 
cylindrical coordinates, and noting that the process of differentiation does not 
introduce any dependence on the individual variables v or t.) 

If we now insert (4)  in (3) ,  write R in its cylindrical form 

R = [(z - zPl2 + r2 + r; - 2rrp cos (v -vp)lt, (5 )  

and change the variables of integration from ( r ,  q ~ ,  z, t )  to (r,rp, z,@), the sound amplitude 
becomes 

r 

in which 

plays the role of an effective Green's function (the so-called spiral Green's function). 
Here, the integration with respect to @ is over - co < @ < + 00, and the angles yi - 
which correspond to the retarded times at which the source point ( r ,  @, z )  makes its 
contribution towards the value of Go at the observation point (rp,  GP, zp )  - are 
solutions of the transcendental equation 

g(v) v-vp+ Rw/c = @-GP = q5 (9) 

in the range -7t < v-vP < 7t. (The present g(v) is the same as g(+p-&p++n) of 
Ardavan 1989.) 

When rw 2 c, i.e. the speed of the source point equals or exceeds the speed of the 
waves it generates, g(v) is an oscillatory function of 

(10) 

whose derivative vanishes at 

cp+ - = qp - arcsin (6' r"' h+), 

and the Green's function Go diverges on the following two-sheeted surface at which 
dg/dg? = 0: 

q5 = q5+ = h,  - -arcsin(r",'F'h,). (1 1) 

Here, h ,  = [(2-2p)2 + P + 6-  2 + 2&, (12) 

where d = (f;-l)(P-l)-(i-iP)2, (13)  

and ( f ,  2; f p ,  fP) stand for the dimensionless coordinates m/c, zw/c, r p  w/c and zp w/c, 
respectively. The two sheets (+) of the tube-like spiralling surface q5 = q5+ - are tangent 
to one another and form a cusp along the curve 

(P = (CP- l)+-arctan(t;~- I);, ( 1 4 4  

(14b) i-ip = g;- l)i(P- l)t, 
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where they meet. On this cusp curve, d2g/dcp2 also vanishes and the Green’s function 
Go has a higher-order singularity. 

zp)- 
space of the observation points, we call this surface - which constitutes the envelope of 
the wave fronts emanating from the source point in question - the caustic (see figures 
1 and 2).t But when the observation point is fixed and (1 1) describes a surface in the 
(r,  @, 2)-space, we refer to it as the bifurcation surface. The bifurcation surface in the 
( r ,  @, z)-space has the same shape and points in the same direction as the surface that 
is obtained by reflecting the caustic across the meridional plane c j j p  = cjj in the 
( rp ,  cjj,, z,)-space. Figure 3 shows the bifurcation surface associated with an observation 
point in the near field, and figure 4 is a schematic sketch of the position of the cusp 
curve of a bifurcation surface in relation to that of the sonic cylinder F = 1. For Fp p 1, 
(14a) yields dq5/di z Fp, which means that the cusp curve of the bifurcation surface 
associated with an observation point in the far zone winds around the sonic cylinder 
through a large angle - of the order of Fp - before advancing a short distance in F. 

When we superpose the sound waves from the volume elements that constitute an 
extended source, as in the expression for p(rp,cjjp, 2,) in (6),  the coordinates of the 
observation point (rp,@p,zp) are fixed and we are primarily concerned with the 
behaviour of the Green’s function Go which appears in the integrand of this equation 
as a function of the coordinates (r,@,z) of the source point. Just as in the case of a 
rectilinearly moving source distribution where the source points that produce an 
infinite sound at a given observation point P are those that lie on the inverted Mach 
cone issuing from P (see figure 1 in Ardavan 1991a), so in the present case the 
singularity of Go in the (r,  I+, z)-space occurs on the bifurcation surface. In other words, 
the present bifurcation surface is simply the counterpart of what in the rectilinear case 
appears as an inverted Mach cone (see figure 2 in Ardavan 1991a). 

The bifurcation surface divides the volume of the source into two parts with differing 
influences on the field; whereas the source elements outside this surface influence the 
sound field observed at its conical apex, P, at only a single instant, the source elements 
inside the surface influence this field at three values of the retarded time. For source 
points on the bifurcation surface, which approach the observation point P with the 
wave speed along the radiation direction, the values of two of the three retarded times 
in question coincide and the wavelets that arrive at P interfere constructively to form 
a singularity. In the case of a source point that lies on the cusp curve of the bifurcation 
surface, i.e. that approaches the observer with zero acceleration as well as with the 
wave speed along the radiation direction$ the singularity of Go is caused by the 
coincidence of all three values of the retarded time and is therefore of a higher order. 
(The physical content of the introductory material presented in this section, which 
forms the basis of the following analysis, has been discussed in detail in Ardavan 1989, 
1991 a.) 

When the source point (r,  @, z) is fixed and (1 1) describes a surface in the ( rp ,  

t Note that the caustic is here defined as the envelope of the wave fronts emanating from a 

1 From (9, (9) and p = wt+@,  it can be seen that the equation dg/dp = 0, which defines the 
circularly moving point source, without any reference to frequency. 

bifurcation surface, is equivalent to 

and the equation d2g/c4? = 0, defining 

dRl = c ,  
dt t- tp-Ric 

the cusp curve of this surface, is equivalent to 
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3. Asymptotic expansion of the spiral Green's function at its caustic 
It is not possible to solve (9) explicitly and so find an exact expression for the Green's 

function Go. However, we shall see in the following sections that the non-spherically 
decaying contribution towards the value of p at a given observation point within the 
solid angle (76) is in fact made by the source elements in the vicinity of the cusp curve 
of the bifurcation surface that is associated with that observation point. What is 
needed for the purposes of the present analysis, therefore, is only an asymptotic 
approximation to Go in the neighbourhood of the cusp curve (14), an approximation 
that easily follows from the method already developed by Chester et al. (1957) and 
Ludwig (1966). 

Since the source density S(Y, @, z )  is a periodic function of the azimuthal coordinate 
@ of the blade-fixed frame, it can be expanded into a Fourier series. Insertion of this 
series in (6), in turn, results in the Fourier representation 

p = C eim@p rdrdzs, GO,, s (15) 
a, 

,=-a, 

where 

and 

We are concerned in this section with asymptotic approximations both to the Fourier 
component GO,, and to the Green's function Go itself. 

As long as the observation point does not coincide with the source point, the 
function g(V) is analytic (see Ardavan 1989) and the following transformation of the 
integration variable in (1 7) is permissible : 

(1 8) g(v) = $3 - u2v + b, 

where v is the new variable of integration, and the constants 

a = (&$+ - $-): and b = ;($+ + $-) (19) 
are chosen such that the values of the two functions on opposite sides of (18) coincide 
at their extrema (cf. (11)). Thus an alternative exact expression for GOm, within the 
region A > 0 where $+ - are well-defined, is 

,. 

I = R-' dcp/du, 
J Go, = dv Iexp [irn(+u3 - a2u + b)], 

in which 

and the range of integration is the image of -n < q-vP < n under the mapping (18). 
Now, close to the cusp curve of the bifurcation surface at which a vanishes and the 

extrema u = If: a of the above cubic function coalesce, I may be approximated by 

I0 = P + P ,  (22) 
where 

and 

The resulting expression for Go, will then constitute, according to the general theory 
described in Bleistein & Handelsman (1986, chapter 9), the leading term in the 
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asymptotic expansion of this quantity for large (positive) m. Equations (18) and (21) 
yield a function I which is indeterminate at v = +a. Using 1’Hopital’s rule and the 
solutions (10) of dg/dg7 = 0, we find, from (23) and (24), that 

p = ( w / c )  (+a):(h::+h,i)A-a, 

and q = (w /c )  (2a)-+(h:: - A;;) ~ - t .  (26) 

p ,  = PId=, = 2$(0/c) (t; P - l)-i, 

q, 3 qld=, = 2-%(w/c) (?$ P - 1)-1, 

These expressions are, in turn, indeterminate on the cusp curve, but their limiting 
values, 

(27) 
(28) 

on this curve are both finite and non-zero. 
Not only can I in (20) be written as I,, but also the integration limits in this equation 

can be replaced with +co without altering the value of the leading term in its 
asymptotic expansion. Hence, for a large positive m we obtain 

by virtue of the definition of the Airy function. (The corresponding value of GOm for 
negative m is given by the complex conjugate of the right-hand side of (29).) This 
expression, which though indeterminate is finite on the cusp curve, represents the 
leading term of an asymptotic expansion that is uniform with respect to the parameter 
A ,  and includes the expression that is obtained by the method of stationary phase as 
a special case (see $6). Note that the term involving the derivative of an Airy function 
in (29) is smaller than the first term in this equation by a factor that vanishes like 
Rpl for R,  = (r;+z;)i+co, and like m-i for m+co when A = 0. 

The above expansion can in fact be carried out also in the time domain. Because the 
high-frequency contributions (m % 1) to the Fourier transform of Go are received from 
the discontinuity on the cusp curve of the bifurcation surface where this function is 
most singular, the expansion of Gom for large m in the frequency domain corresponds 
to a special case of the expansion of Go at its cusp curve in the time domain, i.e. to a 
limited regime of the same approximation.? 

To obtain the expansion in the time domain, we only need to use (18) and (21) to 
rewrite (7) as 

[pAi( - mb2) - im-5 qAi’( - m&)] (29) 2nm-i eimb 
Gonz - 

Go = dv 18(+v3 - a2v + b - $), (30) s 
and replace I by I,; then the integral, whose limits should also be replaced by f 00, can 
be evaluated explicitly. Depending on whether the cubic equation for v, which follows 
from the vanishing of the argument of the delta-function in (30), has three roots or one 
root, the result is 

(3 1 a)  
or Go - - l)-;[p sinh (i arccosh 1x1) 

Go - 2a-7 1 - x2)-i[p cos (i arcsin x) - aq sin ($ arcsin x)], 1x1 < 1, 

where 
+aqsgn(~)sinh($arccoshIxl)], 1x1 > 1, (31b) 

x = [4 -x4+ + 4-)1/W+ - 4-11. (32) 
Note that what we have here called the cusp curve is in the discussion of the general theory given 

by Ludwig (1966) referred to as the caustic. From the point of view of the lower-dimensional 
(r,@,z)-space in which (1) reduces to an equation of the mixed type, i.e. to (82), the bifurcation 
surface is the ray conoid of the governing equation in its domain of hyperbolicity, and the cusp curve 
is the locus of the points at which the rays focus and form a caustic (see Ardavan 1989, $6, and 
Ardavan 1991 a, $3). 
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Once again, the second terms in (3 1 a) and (3 1 b) are smaller than the first terms in these 
equations by a factor that vanishes like Rpl as R, -+GO. The corresponding expression 
for Go outside the region d > 0, where there is no caustic, is not in fact needed for the 
following analysis. 

4. Asymptotic expansion of the radiation field in the frequency domain 
To calculate the asymptotic values of the coefficients in the Fourier representation 

of the sound field of an extended source, we must now insert (29) in (15) and carry out 
the remaining integrations over the volume of the source. We shall however begin the 
analysis in this section with the exact expression (20) for Gom, rather than with (29), in 
order to emphasize the role played by the source elements at the cusp curve of the 
bifurcation surface in the generation of the leading contribution to the sound field. 

The variables a and b that appear in (20) may be expressed as functions of r and z ,  
with the aid of (19), by noting that according to (11) and (12), we have 

h ,  = [+f[L (33) 

and hence 

where 
:($+ f 4-1 = [+ - arctan &, 

[* = {;(p + P + r"p - 2) & .\/[+($ + P + r"p - 2)2- A]};, 

(34) 

(35) 
6 E 5-2,, (36) 

and d is defined in (13). In the present case, a pair of independent variables, more 
suitable than ( r ,  z )  for marking the points inside the region d = [! [: > 0, is [-, which 
vanishes on the cusp curve, and 6. If we use (35) and (36) to replace r and [+ everywhere 

(37) 

(38) 

(39) 

by 
? = (1 + ["q 1 + $(?; - 1 - [!)-1]i, 

[+ = [ti - 1 + ?;p(?; - 1 - g)-q+, 

a(?, ;)/a([-, g = f'[-[ 1 + ?; p(?; - 1 - [!)-21, 

and note that the transformation from ( r ,  z )  to ([-, 0 has the Jacobian 

we find that (15) and (20) jointly yield 

J 

x exp {im[$v3 - (;)'([- - arctan [-)h + [+ - arctan [+I}, (41) 

in which [+ is to be regarded as the function of ([-,0 given in (38). 
Because the phase of the integrand in (41) is stationary at [- = 0, v = 0, for any given 

{, it now follows that the main contributions towards the value of the [--quadrature 
are made by the source elements at the cusp curve, and that we may approximate both 
the phase and the amplitude in this equation by their values in the neighbourhood of 
6- = 0. Thus replacing I by lo (as in (22>(24)), evaluating I, at [- = 0 (as in (27) and 
(28)), and neglecting the smaller term proportional to qo, we find that the integration 
over v results in 

d6dt- [- [o~,lg-=o pm - 2n(c/w)2(;m)-i(?; - 1)-1 

x Ai [ - (;m)% [!I exp [im([, - arctan [,)I, (42) 
J 
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where 

This equation is in fact a direct consequence also of (15), (29) and (40). 
The integration with respect to t- in (42) extends, according to the method of 

stationary phase, over (0, co), which comprises all permissible values of E-, and may be 
performed immediately : 

to = E+lf-=o = [i; - 1 + r"p (i; - l)-lp]i. (43) 

(see formulae (10.4.35) and (11.4.17) of Abramowitz & Stegun 1970). Combining (42) 
and (44), we obtain 

pm - 4n(c/o~)~ [3m(r"p - 1)I-l dCs,ll-=, to exp [im(E0-arctan [O)]. (45) J 
The phase of the integrand in the remaining integral in (45) is stationary at C = 0, so 

that the leading contribution towards the value of the C-quadrature is given by 

pm N $z(c/w)2m-1(i; - l)-i exp (im#c) dCsmlg-=o exp [$n(r"p - 1)-$3, 

in which $c = (6- l)i-arctan(r"p- 1);. 

Provided that the Fourier component s,15-=o of the source density along the cusp curve 
has a support 1 in z for which the Rayleigh distance mw12/c is much greater than 
(1 - C2)irp, and has a lengthscale of variation 1' for which rnwl'lc is much smaller than 
unity, we may now replace the interval of integration by (- co, + co) and the amplitude 
ofthe integrand, S,I~-=~, by to reduce the integral in (46) to a Fresnel integral 
whose value is known (formulae (7.3.20) of Abramowitz & Stegun 1970): 

(46) 

(47) 

s 

pm - $(c/~)~(27c/m)% (Y", - l)-aexp [i(m$c +in)] ~,l~-=,,~=~. (48) 

This contribution, which comprises the leading term in the asymptotic expansion of p m  
for large m, thus arises from the vicinity of a single source point at the intersection of 
the cusp curve and the sonic cylinder (point C in figure 4), and is detectable only in the 
orbital planes of the volume elements which constitute the source distribution, i.e. over 
an interval in zp which equals the z-extent of the source distribution. What 
distinguishes point C(i = 1,c  = 0, $ = $c) from the other points on the cusp of the 
bifurcation surface is that not only does a source element located at this point move 
with the wave speed and zero acceleration relative to the observer, but it also has a 
velocity whose magnitude (and not just its component along the radiation direction) 
equals the speed of sound. 

As long as the source density s has non-zero Fourier components at high enough 
harmonics of the rotation frequency (m 9 1) for the Rayleigh distance to be greater 
than the distance of the observer from the source, it follows from (48) that the 
corresponding Fourier components pm of the sound amplitude, and hence p itself, 
would fall off like &;with the distance ip( 9 1) away from the source. This is a property 
that the present type of radiation shares with the better known Mach emission from 
a rectilinearly moving supersonic source. But for Mach emission by a finite-duration 
source, it is known from an analysis in the time domain (see Appendix A) that the 
sound amplitude falls off cylindrically, i.e. like r;;, whatever the Rayleigh distance 
relative to the distance r p  of the observer from the path of the source may be. One 
would expect, therefore, that as in the rectilinear case the non-spherical decay of the 
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sound amplitude is a frequency-independent feature of the present radiation that 
remains in force irrespective of whether or not s, is non-zero for large m. The time- 
domain calculation in the following section in fact confirms this expectation. 

5. Asymptotic expansion of the radiation field in the time domain 
The sound field arising from each supersonically moving constituent point of the 

source diverges on the caustic associated with that source point and decays spherically 
outside this surface. The singularity on the caustic is due to the infinite density of a 
point source and is removed once the fields of a continuous set of point sources are 
superposed, i.e. once the Green's function Go is convolved with the source density over 
the volume of an extended source (see Ardavan 1991~).  However, since there is a 
possibility of constructive interference between the contributions from different source 
elements, which is mathematically reflected in the divergence of the Green's function 
on the bifurcation surface of a given observation point, the resulting singularity-free 
field of an extended source need not decay like Rpl when R, tends to infinity along the 
associated caustics. In this section, we show that this is in fact so by calculating the 
contributions of the source elements located on the cusp curve of the bifurcation 
surface from (6) - for an arbitrary source density - directly in the time domain. The 
cylindrical decay of sound encountered in the above frequency-domain analysis is thus 
seen to be a feature that pertains to all harmonics of the rotation frequency that enter 
the Fourier decomposition of the radiation. 

Right on the cusp curve of the bifurcation surface, the variables 6+ - which were 
introduced in (35) assume the values 

E-ld=, = 0 (49) 

and 6 + L l = o -  I = 5 0 = (p P p- l)t, (50) 

h ,  = 609 (51) 
b z t,, - arctan to, (52) 
a zi (&- - arctan t-); = 2-t E-, (53) 
A = 6:E?, (54) 

(55) 

if we parametrize the cusp curve by i, rather than by 2 as in (43). So, in the 
neighbourhood of this curve, i.e. for 5- < 1, we have 

where use has been made of (19) and (33>-(35). The corresponding values of p and q 
are 

which were derived in (27) and (28). 
The variable x that appears in expression (31) for the asymptotic value of the Green's 

function equals f 1 on the bifurcation surface: it has the value + 1 on the sheet 
q5 = q5+ and the value - 1 on the sheet q5 = q 5 L  On the cusp curve of the bifurcation 
surface, however, both the numerator and the denominator in (32) vanish, so that the 
value of x depends on the direction along which this curve is approached. In the 
neighbourhood of the cusp curve, we have 

[ p ,  q] = 2i(w/c) 1,4-; 6-q 0 7  

x = (q5 - to + arctan 60>/(+3>, 
in which a = 2-+Adf5;', (57) 

and A = 2(t~-1)df( t2-1)~[( t~-1)df(~-1)~-~~~].  (58 )  

(56) 

(See equations (52)-(54), (32) and (13).) 
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If in addition to being close to the cusp curve of the bifurcation surface-which 
spirals out to infinity - the observation point is located in the far zone, i.e. ip >> 1, then 
the variable [,, defined in (50) reduces to itp and hence (55) becomes 

Also, (57) and (58) show that a approaches the value 

which is independent of the radial distance R,  (>> 1) of the observer from the source: 
the fact that z p  = R, cos 8, >> z when the source is localized about z = 0 and 0, =t= i7c 
implies that ?j1l(J tends to cot 8, for all values of the colatitude 

8, = arccos ( zp /Rp) .  (61) 

Thus it follows from (60) and (61) that, in the radiation zone, the terms involving q in 
expressions (31) for the Green's function, that decay faster than Rpl, must be neglected. 

For source points that lie within the bifurcation surface, and an observation point 
that is located in the far zone, therefore, the asymptotic value of the Green's function 
Go at its caustic is given by the first term in (31 a). If we introduce the following two 
variables which vanish on the cusp curve of the bifurcation surface : 

(cf. (14) for i, $ l), then the expression for this asymptotic value assumes the form 

G, - 2(w/c)(1- F)+ [;(? - cos [$ arcsin &J@], (64) 

in which [i = 3($yp)t(1 - p2)-+J, (65) 

and ip >> 1 , O  < ( 4  T",(P- I);, l [ ~ / ~ ~ l  < 1. Note that [i denotes the value of [g on the 
bifurcation surface, a value that is positive on the sheet $ = $+ and negative on the 
sheet 4 = 4- of this surface (cf. (32), (56) and (62)). Moreover, it can be assumed 
without any loss of generality that the source distribution is localized about z = 0, and 
the colatitude of the observation point 1 8, (see (61)) lies in the interval (O,!gc), so that 

= 12-2,l = ip-i by virtue of R, % 1 and hence 
* 

6 = i- i ,+ip(P- 1);. (66) 

Thus, at any given value of i, the coordinates [ and 6 are related to z" and @, 
respectively, by pure translations. 

Let us further simplify the above expression for the Green's function G, by focusing 
attention on those source points that lie not only within the bifurcation surface close 
to its cusp curve but also in the neighbourhood of one of the sheets of this surface. For 
s_uch source points, we also have 0 < 1 - ft/(il 4 1 and so we may replace gin (64) by 
6, wherever possible, to obtain 

Go - (w/c)(  1 - F - 4  g$((- [J;, 
i, >> 1, 0 < [g ip(r"- l);, 0 < 1 -@/[$I 4 1. (67) 

(The expression for G, is the same on both sheets of the bifurcation surface.) 
To obtain the contribution of the source elements in question towards the value of 

the sound field, we must now insert the above expression for G, in (6) and perform the 
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integration over the volume of the source. In order to be consistent, however, we 
should first approximate the source term s(r, @, z )  in (6)  by its value in the immediate 
neighbourhood of the cusp curve of the bifurcation surface that is associated with an 
observation point in the far zone. On this locus, the variables @ and z in s(r, @, 4 can 
be eliminated with the aid of the parametric equation of the cusp curve ($ = 0, 5 = 0) 
to express the local value of the source density, S I + ~ , ~ = ~ ,  as a function of i alone. The 
cusp curve associated with an observation point in the far zone lies almost entirely on 
a cylinder of radius i = cosec 8, (see (75)), so that the interval in i over which this curve 
intersects a localized source distribution is of the order of G1 only (according to (14), 
di/d2 z If: G1 cos S,.) The difference between the exact value of the source density 
along the cusp curve and its average value 

w, @, Z)I&J,$=O) = r,, (68) 

over the r-interval in question, therefore, is negligibly small. 
Once the Go given in (67) is inserted in (6),  s is replaced with s,,_and (62) and (66) 

are used to change the variables of integration from ( r ,@,  z )  to (i, #,a, the following 
expression results for the leading contribution to the sound generated by the source 
elements in the immediate vicinity of the cusp curve of the bifurcation surface: 

p - ( c / w ) ~  s,, /did$dc?( 1 - yhz)-i@(c- eb)-i. (69) 

The %quadrature in (6)  over a short interval 62(4  1) right next to, and within,-the 
bifurcation surface corresponds to an integration with respect to c in (69) from c b  to 
cb+62 (see (65) and (66)). Carrying out this integration, we obtain 

1+82/f0 

p - (c/w)~F,, b i d $  i( 1 - FZ)-; sl du(u - 1)" (70 a> 

(70 b) - 2(~/~)~T, , (282)i t7 ,$  did$?(?- 1)-+(3$)-$, s 
where use has been made of (65) to express eb in terms of i and $. That the sound 
amplitude in the radiation zone decreases with the coordinate R, of the observation 
point like R;;, rather than R;', has now become evident since we shall see below that 
the value of the remaining integral in (70b) is independent of R,.? 

The way in which the non-spherical decay of the wave amplitude is brought about 
by the caustic can be seen from the structure of the definite integral on the right-hand 
side of (70a). According to (65), the range of this integral tends to zero like G1 as 
iP+m. Had its integrand been regular, therefore, the integral itself also would have 
decreased like Gl, and so the corresponding sound level would have decayed 
spherically. However, the singularity in the integrand of this integral - which reflects 
the presence of a bifurcation surface and hence a caustic - results in a value for the 
integral that tends to zero more slowly (like $) than its range does. That the decay rate 
is given by G; is clearly a consequence of the fact that the Green's function has an 
inverse square-root singularity, and this - as we shall see in 0 8 - is in turn related to the 
fact that the equation governing the present problem has the same structure as that 
governing (two-dimensional) axisymmetric waves in a non-homogeneous medium. 

7 Despite the appearance of coseci8, in the factor f$ = &~cosec~8, multiplying the integral in 
(70b), the right-hand side of this equation remains well behaved on the rotation axis: the quantity 
s l ~ , , ~ ~ ~ ,  and hence S,,, vanishes for 8, = 0. According to (14), the cusp curve of the bifurcation surface 
associated with an observation point on the rotation axis crosses the plane z = 0 at too large a value 
of r to intersect a localized source. 
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The @-quadrature in (6) over a short interval S@( < 1) next to the cusp curve of the 
bifurcation surface corresponds to an integration with respect to (5" from zero to Scjj in 
(72) (see (62) and (9)), and so results in 

p - ( c / w ) ' ~ , , ( ~ S ~ ) ~ ( ~ S @ ) ~ ~ ~  d i i (P  - I)-:. s 
Since the cusp curve of the bifurcation surface lies almost entirely on the cylinder 

r" = cosec8, when ip >> 1 (see (75)), the source elements that contribute to the 
remaining integral in (71) lie within a short interval 8i(  4 1) next to r" = cosec 8,. Thus 
in the case of an observation point with 8, =I= in, for which the value of the integrand 
on this cylinder is both finite and non-zero, the integral is approximately given by the 
product of the value of the integrand at r" = cosec8, with S i :  

However, in the case of an observation point in the plane of rotation 8, = in , the cusp 
curve lies on the sonic cylinder i =  1 at which the integrand in (71) is singular. 
Evaluating the improper integral in question over the interval 1 < i < 1 +SF, we find 
that in this case 

p - ~ ( c / ~ ) ~ S , , ( ~ S ) ~ ( ~ S @ ) ~ ( ~ S ~ ~ ~ ,  8, = fn, (73) 

in which we have ignored S i  relative to unity. This expression differs from the limit of 
(72) for BP++n; that is to say, the asymptotic expansion, of which (72) is the leading 
term, is not uniform with respect to the parameter 8,. 

Note that nowhere in the above derivation of (72) and (73) has it been necessary to 
specify the (spectral) distribution of the source density s as a function of @. The analysis 
in this section makes it clear that the cylindrical decay of the sound amplitude is a 
consequence solely of the behaviour of the Green's function Go on the cusp curve (14), 
i.e. of the radiation efficiency of the source elements that approach the observer with 
the wave speed and zero acceleration along the radiation direction, rather than of any 
specific properties of the steady source distribution in the blade-fixed frame. The 
conditions - on the spectral distribution of s(r, @, z )  as a function of @, and the distance 
of the observer relative to the Rayleigh distance - that were encountered when deriving 
the cylindrical decay of the sound amplitude in the frequency domain reflect limitations 
on the range of validity of the asymptotic technique used in $4 rather than on that of 
its result. 

The limitation of the analysis in $4 stems from an inaccuracy of the high-frequency 
approximation in situations where the sources and the fields depend on one of the space 
coordinates and the time in a single combination only - as in the present case where the 
dependence of these quantities on q~ and t only occurs in the combination $3 = v-ot 
(see also Appendix A). According to the time-domain analysis in this section, the main 
contribution towards the value of the sound field is made by the source elements for 
which both the argument g(y) - q5 of the delta function in (7) and its derivativesdg/dp, and 
d2g/dy2 vanish. These three conditions define the cusp curve of the bifurcation surface. 
According to the frequency-domain analysis, on the other hand, the leading 
contribution towards sound comes from the source elements for which the stationary 
points of the argument of the exponential function in (41) coalesce, i.e. for which dg/dp, 
and d2g/dv2 vanish. These two conditions on their own designate the projection of the 
cusp curve of the bifurcation surface onto the meridional plane @ = const. That is to 
say, the asymptotic approximation that is used in $4 loses entirely the information 
contained in the structure of the caustic (cusp curve of the bifurcation surface) along 
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the spatial dimension that is Fourier-analysed, and so treats the problem effectively as 
a two-dimensional one (see also $7). Had cp and t not appeared in a single combination, 
this limitation would not have arisen of course: in cases where the Fourier analysis is 
with respect to time alone, the projection affected by the high-frequency approximation 
is onto the hyperplane t = const. and does not result in a loss of information about the 
structure of any caustics that may be present. 

In fact, the concept of Rayleigh distance arises in the literature on wave theory in the 
specific context of diffraction by two-dimensional apertures (see e.g. Ziolkowski 1989). 
The Rayleigh criterion is a geometrical constraint - for the occurrence of constructive 
interference - on the distance of the observation point from the boundaries of a planar 
source distribution all of whose points radiate with the same efficiency. In the present 
problem, on the other hand, because the source elements that approach the observation 
point with the wave speed and zero acceleration radiate with a much greater efficiency 
in the direction of the observer than do any other source elements, the site of emission 
is a non-planar space curve which is determined by the position of the observation 
point itself and does not have a fixed shape or extent ($6). The shape of the locus of 
source elements that radiate most efficiently towards the given observation point is here 
such that these elements radiate in phase automatically, regardless of the value of the 
Rayleigh parameter. 

6. Angular distribution of the radiation: compatibility of the results with 
the conservation of energy 

The part of the cylindrically decaying radiation that contains the highest frequencies 
is detectable only in the orbital planes of the volume elements that constitute the 
source, i.e. over an interval in zp that equals the z-extent, Az, of the source distribution 
($4). The energy associated with this part, therefore, is conserved manifestly: while 
the flux density of energy - which is proportional to p2 - decreases like Rpl as we 
move away from the source, the area of a given cylindrical surface with the radius 
Fp = const. 9 1 and the height Az, over which this part is detectable, increases like 
27crPAz, so that the total flux of energy remains the same across all such cylindrical 
surfaces. But since the cylindrically decaying radiation is not exclusively confined to the 
orbital planes of the source elements, it seems at first sight that the flux of energy at 
an arbitrary frequency is not the same across spheres of different radii enclosing the 
source. This is not so, however. This apparent incompatibility with the conservation of 
energy is resolved once the beaming of the radiation is taken into account. Non- 
spherically decaying waves are quite different from most well-documented fields : they 
do not fill the space into which they propagate isotropically and they become more 
concentrated as they travel. Their decay must be as slow as their spreading to conserve 
energy, for the local strength of waves evolving into concentrated patches cannot 
exhibit the usual decay that is exhibited by isotropic waves. 

The component of the radiation whose amplitude decays non-spherically is 
detectable only at those observation points in the far zone for which the cusp curve of 
the bifurcation surface intersects the source distribution ( $ 5 ) .  The angular extent (in Op 
and &) of the radiation beam associated with this component, therefore, is determined 
by the shape of the curve described in (14) and by the distribution of the source density 
in the rotating frame. The projection of curve (14) onto the (z,@)-plane, for an 
observation point that is located in the far zone, is given by 

++p z f f , - ;~- iCOSe, .  (74) 
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Moreover, if the source is assumed to be localized within a region containing z = 0, the 
second member of (14), which describes the projection of this cusp curve onto the 
( r ,  z)-plane, tends to 

in the limit where t, 9 1 and zp 9 z.  
One implication of these relations is that the cusp curve of the bifurcation surface 

associated with an observation point in the far zone winds around a cylinder whose 
radius remains fixed over the extent of a localized source. Their second implication is 
that the latitudinal width of the radiation beam produced by a source distribution 
whose supersonic portion extends from i = 1 to i = to > 1 is given by the wide range 
of angles satisfying cosec0, < to, i.e. by 

i = cosec 0, (75) 

f~ - arccos 6' < 0, < $I + arccos 6'. (76 4 
This is because, for a value of 8, outside the above range, the cusp curve of the 
bifurcation surface crosses the plane z = 0 at too large a value of r to intersect the 
source distribution: according to (14), the cusp curve in question touches the sonic 
cylinder i = 1 at the single point z = z,, g3 = g3c, and moves steadily away from it - by 
winding around cylinders of ever increasing radii - both for z > z p  and z < zp (also see 
figure 4). 

The longitudinal width A& of the radiation bean simply equals the longitudinal 
extent A@ of the source distribution: 

A@, = A@, (76 b) 

since a shift A@, in the azimuthal position of any observation point results in an equal 
shift A@ in the azimuthal position of the cusp curve associated with that observation 
point. According to (14), the cusp curves of the bifurcation surfaces belonging to two 
observation points with the coordinates (r,, @,, zp) and (r,, @I, + AGP, z p )  intersect a 
cylinder i =  const. > 1 at points whose z-coordinates are equal and whose @- 
coordinates differ by A@ = A@,. The non-spherically diverging signals that are detected 
at (r,, @,, zp) and (r,, @, + A@,, z,), therefore, receive contributions from those source 
points on a circle i = const. > 1, z = const., which are apart by the angle A@ = A@,. 
Hence, when the points on the circle mark the boundaries of a localized source, the 
width of the overall waveform equals A@. 

Before addressing the issue of how an emission into such a wide solid angle as (76) 
is compatible with the conservation of energy, we must also consider the mapping 
between an interval At of (retarded) emission time and the corresponding interval At, 
of observation time. All source points on the bifurcation surface approach the 
observation point with a velocity whose component along the radiation direction 
equals the speed of sound; the source points on the cusp curve of the bifurcation 
surface in addition approach the observer with zero acceleration along this direction 
(see Ardavan 1991 a). For the source points that give rise to the cylindrically decaying 
radiation, therefore, a finite interval of (retarded) emission time is Doppler shifted to 
a vanishing interval of observation time. Given a rotating source point with the fixed 
coordinates ( r ,  @, z )  and a stationary observation point with the fixed coordinates 
(r,, cpp, z,), it follows from d@ = dcp- odt = 0 and dF, = dcj, + wdt, = 0 that the ratio 
dt,/dt of the observation to the emission time intervals has the value - d@,/dp, which, 
according to (9), equals dg/dcp. The bifurcation surface and its cusp curve, on the other 
hand, are by definition the loci of the points at which dg/dcp = 0 and d2g/dcp2 = 0, so 
that for such points dt,/dt = 0. 
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For those volume elements of an extended source that do not lie right on the 
bifurcation surface, the emitted wave fronts do not crowd together to such an extent 
that the ratio of the observation to the emission time intervals vanishes exactly. 
Nonetheless, the Doppler factor dg/dg, appearing in (8) ensures that the ratio in 
question - which depends on R, - has exceedingly small values for the filamentary part 
of the source at the cusp curve of the bifurcation surface that radiates coherently and 
so gives rise to the non-spherically decaying signal. The inverse square-root singularity 
of the leading term in the asymptotic expansion (67) of the Green’s function at its 
caustic - which arises from the vanishing of the Doppler factor dg/dg, in (8) - shows 
that for the source points neighbouring the cusp curve the ratio of the observation to 
the emission time intervals approaches zero like the square root of the distance c-cb 
from the bifurcation surface. When we integrate the Green’s function over a 
neighbourhood of the cusp curve (in (69)), we find that the contribution arising from 
the singularity introduces an extra factor of k5 into expression (70) for the sound 
strength that would have been absent had the Doppler factor been non-vanishing. The 
effective value of the ratio dt,/dt for the source points that lie in the neighbourhood 
of the cusp curve, therefore, is smaller the larger R, is. 

Since in the present case the sound field depends on g,, and t, in the combination 
g,,-utp only, the smallness of the ratio dt,/dt for the source points in the 
neighbourhood of the singularity of the Green’s function translates into the narrowness 
of the azimuthal width of the subpulse that is produced by the filamentary locus of 
volume elements at the intersection of the cusp curve of the bifurcation surface with the 
source distribution. The fact that dt,/dt is smaller the larger R, is implies that the 
longitudinal widths of the subpulses in question are narrower the further away we 
move from the source. The requirements of the conservation of energy are met in the 
case of the signal produced by an individual filament, therefore, because the fact that 
p2 should be decreasing like Rpl, rather than like Rp’, is demanded by the reduction in 
the longitudinal width of such a signal with range. In other words, the enhancement 
of the flux density of energy at the position of the observer is compensated by a 
corresponding reduction in the size of the area subtended by the radiation beam of the 
filament. (Note, however, that, over essentially all of the solid angle covering the region 
outside a given subpulse, the emission from the filamentary source of that subpulse 
decays spherically.) If it were possible to move the observation point away from the 
source in such a way that the cusp curve of the bifurcation surface intersected the 
source distribution along the same segment at all R,, then the fact that the retarded 
potential (3) - from which (72) was derived - is both consistent with the conservation 
of energy and automatically contains the Doppler factor dg/dg, (see (8)) would have 
implied that the width of the signal would decrease with increasing R, like Rpl. In 
general, however, no two subpulses within the waveforms that are observed at different 
distances have identical filaments as their sources, so that the R,-dependence of the 
width of an individual subpulse is not well defined. 

Insofar as a cylindrically diverging subpulse can be detected at any observation point 
that lies within the solid angle (76), the overall radiation beam consists of a 
superposition of the narrow beams that are produced by the filamentary sources 
described above. The filamentary sources also generate a sound field which decays 
spherically outside the narrow radiation beams in question. However, as far as the 
cylindrically decaying component of the radiation is concerned, the different subpulses 
constituting the waveform are each generated by a different filamentary part of the 
source. Since the signals received at two neighbouring points of region (76) on a sphere 
R, = const. %- 1 arise from filaments that have both different extents and different 
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strengths, the resulting overall waveform thus consists of the superposition of a 
(continuous) set of ‘ spiky’ subpulses with uneven and fluctuating amplitudes. 

The energy associated with the overall waveform is conserved because that 
associated with each individual subpulse is. That the radiation beam (76) spreads 
spherically, while the flux density of the energy radiated by each filament - and 
associated with each subpulse - decays non-spherically, is not incompatible with the 
requirements of the conservation of energy because the distribution of the intensity of 
the radiation across the beam is not independent of R,. Just as the radiation received 
at different points on R, = const. is generated by different filamentary parts of the 
source, so also the emissions received at the same (O,,@,) but different values of R, 
arise from different source elements: any change in the position of the observation 
point changes the segment along which the cusp curve of the bifurcation surface 
intersects the source distribution. The site of emission of each subpulse is determined 
by the position of the observation point itself, and it is not possible to identify a unique 
source distribution for the different waveforms that are observed at different distances. 
The subpulse structure associated with the variations in the intensity of the radiation 
with angles 8, and @,, therefore, has a pattern that changes radically as the distance 
R, changes. This change, in conjunction with the fact that the subpulses are narrower 
the further away we move from the source, explains how the average value of the flux 
density p2 over the surface of the sphere R, = const. will - in compliance with the 
conservation of energy - decay like Rp2, while at the same time the flux density of 
energy associated with an individual subpulse would differ from its near-field value by 
the factor Rpl. 

Although being generally unfamiliar, the above features are also exhibited by the 
radiation emitted by simple model systems. Imagine, for instance, a set of point 
sources, randomly located on the circumference of a circle of radius L, which are 
initially at rest and which simultaneously move in straight lines at the supersonic speed 
u, with zero acceleration, to the points diametrically opposite their original positions 
and abruptly come to rest once again. An observer detecting the resulting radiation in 
the far zone would receive a pulse with the width 2L/u if her line of sight does not make 
the angle arccos (c/u) with the trajectory of any of the point sources; otherwise, she 
would in addition receive an impulsive signal as she is hit by the Mach wave of one of 
the sources. The additional large-amplitude component of the radiation is generated by 
the crowding together of the wave fronts that emanated from a single one of the point 
sources as it moved to its new position, i.e. from a limited part of the source 
distribution. This component of the radiation does not decay spherically but, by virtue 
of being observable only during a time interval that is vanishingly smaller than the 
emission time 2L/u, carries the same amount of energy across all spheres that enclose 
the source. 

For a more realistic example of a system illustrating these features, and a 
demonstration of the fact that the retarded potential takes account of the conservation 
of wave energy automatically, see Ffowcs Williams & Guo (1988) and Guo (1990). See 
also the examples of propagating wavepackets known as acoustic or electromagnetic 
‘missiles’ given by Myers et al. (1990), and the references therein, and by Ffowcs 
Williams (1993 a, b). The non-spherically decaying wave packets - or ‘missiles’ - of 
diminishing duration discussed in these references are basically no different from the 
individual subpulses encountered in the present paper; except that, here, the volume 
distribution of quadrupole sources, by acting as a continuous collection of continually 
operating ‘missile’ launchers each of which points in a different direction, gives rise to 
an emission of this type that propagates over a wide solid angle. (That the particular 
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examples of the acoustic and electromagnetic missiles so far described in the literature 
decay non-spherically only within a certain Rayleigh distance is a consequence of the 
fact that they are invariably generated by finite-extent planar source distributions (cf. 
Ziolkowski 1989).) 

7. Comparison of the results with those of earlier works 
A basic feature of published treatments of the steady rotating-blade noise problem 

is that they are all based - in most cases implicitly - on various asymptotic properties 
of the Green's function that appears in (17). The exact expression for the mth Fourier 
component of this Green's function is 

J,(A?,) HE) (A?,) cos [k(S-i,)] dk, (77) 

where 
m( 1 - k2/m2)i, k2 < m2, 

i(k2 -m2)i, k2 > m2, 

with real and positive square roots. Here, ?,(?,) is the smaller (larger) of ?, and ?, J ,  
is the Bessel function of order m and Hg) is the Hankel function of the first kind and 
mth order. (For the derivation of this expression see Hanson 1983, Tam 1983, and 
Ardavan 1984.) 

To obtain the far-field approximation to Go,, the Hankel function in (77) is replaced 
by its asymptotic value for large argument ( f P  % 1) and real A, 

H;)(A?,) -  AT",)-; exp [i(AtP - im7c -+)I, m > 0, (79) 

which dominates the corresponding value of this function for imaginary A (cf. formulae 
(9.2.3) and (9.7.2) of Abramowitz & Stegun 1970). Then the evaluation of the resulting 
integral over k by the method of stationary phase yields 

Go, N ( w / c )  R;' exp [im(k, - S cos B, -in)] J,(mr"sin B,), rn > 0. (80) 

This is the expression, derived by Hawkings & Lowson (1974), Hanson (1980), 
Ardavan (1981), and Tam (1983), whose generalization to the case of a helically 
moving source has been adopted as the point of departure for several recent studies of 
high-speed propeller noise (see e.g. Parry & Crighton 1989; Crighton & Parry 1991 ; 
Peake & Crighton 1991 a, b). It states that the sound amplitude decays spherically, and 
- as the kernel in the radiation integral (15) - it implies that the main contribution 
towards the value of pm for m % 1 is made by the source elements at the cylindrical 
surface r" = cosec B,, where the argument of the Bessel function J,(m?sin 0,) equals its 
order. Crighton & Parry (1991) and Peake & Crighton (1991 a, b) refer to ? = cosecB, 
as the Mach radius; Ardavan (1981) emphasized the equivalent cylinder as the likely 
site of emission for the electromagnetic radiation received from pulsars. 

We have seen ($3) that the locus at which Go attains its sharpest singularity is the 
cusp curve of the bifurcation surface, and that this curve, for an observation point that 
is located in the far zone and a source distribution that is localized about z = 0, lies on, 
and winds around, the cylindrical surface r" = cosec 0, (cf. (75)). Thus, the far-field and 
high-frequency approximations replace the locus where the radiation efficiency peaks 
by a surface containing this curve. (The high-frequency approximation, on its own, 
replaces this curve with the surface of rotation generated by its projection onto the 
meridional plane I$ = const. (see §5).) The conclusion reached in Ardavan (1981), and 
in Peake & Crighton (1991 a), that in the limit of high frequencies the emission received 
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at the colatitude 19, in the far zone arises from the source elements at the intersection 
of the Mach cylinder with the volume of the source is not exact. The crucial point at 
which new ground is broken in the present analysis is that where the loci of singularities 
of the Green’s function G, have been treated exactly. It is the error in the usually good 
approximations on which the conclusion by Ardavan (1981) and Peake & Crighton 
(1991 a) is based that gives rise to the non-spherically diverging pulses identified in this 
paper, pulses whose formation by the constructive interference of the contributions 
from differenct source points on the cusp curve depends crucially on the deviations of 
this curve from its approximating surface. The consequences of the fact that it is the 
cusp curve of the bifurcation surface that delineates the site of emission, and not the 
cylinder i = cosec O,, are potentially great because they lead to pulses that decay more 
slowly and therefore are bigger than spherically spreading waves in the far zone. 

Neither the surfaces of the rotor blades nor the shock discontinuities attached to 
them (cf. Hanson & Fink 1979; Farassat & Myers 1989; Peake & Crighton 1991 a, b) 
could in general fall within the site of this enhanced emission: the cusp curve of the 
bifurcation surface could at best intersect any discontinuities in the near-field flow at 
a few isolated points. Our cylindrically decaying radiation that could dominate the 
distant sound would arise from the coherent emission of the source elements along the 
cusp curve and should be insensitive to the presence or absence of a few such isolated 
source points. 

A further limitation of the usual far-field approximation, which is actually more 
serious than its misplacing the site of emission, is that by altering the structure of the 
phase of the exponential function in the integrand of (17), it misses out the non- 
spherically decaying component of the radiation altogether. The far-field expression 
(80) is what follows from (17) when the phase function g(p) = p-pp-wIx-xpl/c (see 
(9)) is approximated by the first two terms in its Taylor expansion in powers of Ixl/lx,l. 
Unless some of the higher-order terms in this Taylor expansion are also retained, the 
resulting expression would not be an exact enough representation of g(p) for the effects 
arising from the source elements at the locus of coalescence of the critical points of this 
function to show up. To extract the non-spherical decay terms, it is essential that g(p) 
is transformed into, or at least approximated by, a cubic function of q ~ ,  as in $3, and 
that the coefficients in this cubic function are only approximated by expressions that 
remain uniformly valid at any source point on the cusp curve of the bifurcation surface 
and at all observation points - as in $5. 

The high-frequency approximation to Go, may be obtained by noting that the 
product of the Bessel functions in (77) is exponentially small when Ikl is of the order 
of or greater than Iml (cf. formulae (9.3.2), (9.7.7) and (9.7.8) of Abramowitz & Stegun 
1970). We may therefore replace h with its value for k2 4 m2, i.e. m, take the resulting 
Bessel functions outside the integral sign, and perform the simple integration that 
remains to arrive at 

Go, - in(w/c>J,(mi,) HE)(mi,) &(i-i,), m-tco (81) 

(see Ardavan 1989). The final result of $4, equation (48), can in fact be obtained from 
this expression directly. If (81), with i, = ip and i, = i, is inserted in the expression 
for pm defined by (1 5) and (40), and the trivial integration over 2 is performed, then the 
integrand of the remaining integral over i turns out to be the same as that of the Hankel 
transform of ~,1~=,,. The kernel J,(mf) of the Hankel transform in question, on the other 
hand, is in the asymptotic regime m +GO expressible in terms of an Airy function whose 
peak occurs at r^ = 1. So, we may approximate srnlC=,, in the integral over i by S , I ~ = , , ~ = ~  
and extend the range of integration to the interval (0, co). Once the resulting integral 
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is evaluated (by formula (11.4.17) of Abramowitz & Stegun 1970), and H:)(m?,) is 
replaced with the leading term in its asymptotic expansion for large m (by formula 
(9.3.3) of Abramowitz & Stegun 1970), we obtain an expression for p m  that is precisely 
the same as that given in (48). From (8 l), it also follows that in contrast to the radiation 
generated by a subsonic source distribution, whose spectrum has an exponential cut- 
off at high frequencies, the spectrum of the present emission has a power-law decay 
throughout the range of frequencies m $ 1 in which the Fourier transform of the 
source density is non-zero. 

Since the amplitude of H:)(mf,) decays like @ for fP+w (see (79)), the far-field 
approximation to expression (81) is not the same as the high-frequency limit of (80). 
Obviously, it makes a difference whether we first calculate Go, for R, -too and then let 
m+co (in which case the sound amplitude decays spherically), or whether we first 
calculate eom for m +co and then let R, +co (in which case the sound amplitude decays 
cylindrically). The far-field approximation alters the structure of the phase function g 
that appears in (17) so radically as to obliterate the more slowly decaying contribution 
a1 together. 

Since the asymptotic expressions derived in this paper cannot be directly 
differentiated, a technical point concerning the calculation of the gradient of the sound 
amplitude needs to be mentioned. To differentiate the exact expression (15) under the 
integral sign, we must exclude the bifurcation surface from the domain of integration 
to begin with, and only proceed to the limit in which the volume of the excluded region 
shrinks to zero after having completed the calculation. This procedure results in two 
different contributions towards the value of the radial gradient ap/ar,: a surface 
integral arising from the boundaries of the excluded region (which happens to survive 
in the limit in which the volume of the excluded region vanishes), and a volume integral 
involving the derivative of the integrand. The leading term in the asymptotic expansion 
of the contribution from the boundaries of the excluded region is beamed into the plane 
of rotation and behaves like f$m-g for m P 1 and ?, & 1 (see equation (3 1) of Ardavan 
1991 b). However, an asymptotic analysis of the contribution involving the derivative 
of the integrand, by the method presented in 94, shows that the leading term in the 
expansion of this latter contribution behaves like f$m-i in the same regime (see 
Appendix B). So, although responsible for the breakdown of the linearized theory in 
the near zone (Ardavan 1991a,b), the contribution from the boundaries of the 
excluded region may be ignored as far as the high-frequency radiation in the far zone 
is concerned. 

8. Concluding remarks 
In so far as the only assumption we have made in the present paper concerning the 

source distribution is that it is steady in the rotating frame (see (4)), our analysis applies 
to the monopole and dipole as well as the quadrupole term in the Ffowcs 
Williams-Hawkings equation. However, from the fact that the non-spherically 
decaying component of the radiation arises from the source elements at the intersection 
of the cusp curve of the bifurcation surface with the source distribution, it follows that 
the signal observed in the far zone is generated by the quadrupole sources alone. Since 
the distributions of the monopole and dipole sources are two-dimensional, the cusp 
curve of the bifurcation surface can only intersect them at two isolated points on the 
upper and lower surfaces of the rotor blade. Only the elements belonging to the 
quadrupole sources that are distributed over a volume can possibly lie on an extended 
segment of this cusp curve and so contribute towards a strong component of the sound 
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field.? We conclude with the suggestion that the radiation efficiencies of the volume 
source elements which approach the observer with the speed of sound and zero 
acceleration along the radiation direction are - when they occur - likely to exceed 
those of any other source elements by the large factor gP. 

That the enhanced efficiency of these source points should result in the factor *p, 
rather than Fp with a different value of a, may be inferred directly from the 
mathematical structure of the governing equation for the present problem. The 
ordinary wave equation (1) under the assumption that the sound and its sources are 
steady in the rotating frame, i.e. subject to symmetry (4), reduces to 

I a ap a2p I w2 a2p 
r- +-+ --- -= -4ns(r,@,z), ;,i a r )  a 2 2  ( r 2  c2)%2 

which is an equation of the mixed type: it is elliptic in r < c/w and hyperbolic in 
r > c/w. What in the four-dimensional ( r ,  v, z ,  t)-space appears as the bifurcation 
surface is from the point of view of the lower-dimensional ( r ,  @, 2)-space the ray conoid 
of (82) in its domain of hyperbolicity (see Ardavan 1989, $6). From this latter point of 
view, we can regard the variable @ / w  in the domain r > c/w as a time coordinate and 
interpret (82) as the wave equation governing the generation and propagation of 
axisymmetric waves in a non-homogeneous medium for which the speed of sound 
varies like [ 1 - ~ ~ / ( r o ) ~ ] - ; c  with the distance r from the axis of symmetry. Then the fact 
that the Green's function for (82) should have an inverse square-root singularity, or 
that the waves propagating along a caustic of the ray conoid (the cusp curve of the 
bifurcation surface) should decay cylindrically, become mathematical consequences of 
the reduction in the dimension of the wave equation (see Courant & Hilbert 1962). 

The filamentary part of the source which moves towards the observer at the wave 
speed with its normal parallel to the radiation direction, and so acts as the site of 
emission, owes its organized and extended structure to the fact that the flow in the 
blade-fixed frame is steady. For there to be a dense set of source points that radiate 
coherently, this symmetry of the flow which underlies the structure of the bifurcation 
surface described in $2 is essential: the focusing of the rays from a few isolated source 
points is not sufficient for generating a non-spherically decaying signal. It follows, 
therefore, that the noise in the far zone should be suppressed by any effect that breaks 
this symmetry of the flow, i.e. that renders the quadrupole sources in the region 
surrounding the blade unsteady as viewed from the rotating frame. (See also Ardavan 
1991 a.) 

We have identified a slowly decaying component of propeller noise, a previously un- 
identified element but the element with the largest far-field amplitude, which is 
predominantly beamed into the plane of rotation ($5) ,  and is composed of a 
continuous collection of 'spiky ' subpulses with highly uneven amplitudes (9 6). This 
might well be responsible for the acute sensation of crackling which has been 
experimentally known since the early works of Bryan (1920) and Hilton (1939). The 
new element has a surprisingly slow rate of decay and enters only a specific, but 
extensive, region of space: its amplitude decays like R$ at those colatitudes, on both 

t For blade surfaces whose shapes are sufficiently close to the shape of one of the sheets of the 
bifurcation surface in the vicinity of the point C(r" = 1, z = zp ,  9 = +Jr the sound amplitude arising 
from the monopole and dipole sources can decay non-spherically (Ffowcs Williams & Hawkings 
1969, p. 340), or even diverge at the associated observation point (Ardavan 1991 a, p. 662). However, 
this type of non-spherical decay - which is caused by the source elements whose space-time 
trajectories have highly degenerate points of tangency with the past light cone of the observer - can 
only occur under special circumstances and must accordingly be regarded as a special case of the 
generic phenomenon discussed here. 
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sides of the plane of rotation, that satisfy cosec0, < r,,w/c. This component is in 
addition to the conventionally studied component of the propeller noise which decays 
like Rpl - but is likely to dominate it at large range. There seem to be no experimental 
data available on these far-field decay rates in the published literature on the subject; 
the existing data are all concerned with the decay of the sound amplitude in the near 
field, from which little can be learnt that bears on the distant sound. 

We have in this paper derived the wave characteristics by means of an analysis in the 
time domain (95), so that although the more slowly decaying component of the 
radiation is also that which contains the higher harmonics of the rotation frequency 
($4), the decay rate in question is not confined to these higher frequencies. The 
cylindrically decaying component of the radiation contains the lower as well as the 
higher harmonics of the rotation frequency and might well propagate into the far field 
regardless of the fact that high-frequency acoustic waves are subject to atmospheric 
attenuation. To what extent effects associated with nonlinear wave propagation - such 
as those that enter the formation of sonic booms - would influence this component of 
the radiation is of course a question that remains open, though it is not one that is 
difficult to address in the light of the techniques already developed by Whitham (1974) 
and Lighthill (1993). 

I am indebted to J. E. Ffowcs Williams for illuminating discussions and for his 
reading the manuscript and making comments and suggestions that improved it. I am 
also grateful to F. Farassat for drawing my attention to Myers & Farassat (1987), to 
D. Lynden-Bell for helpful conversations, and to A. M. Cargill, D. G. Crighton, A. P. 
Dowling, N. Peake and P. R. Prentice for stimulating comments and criticisms. 

Appendix A. The radiation by finite-duration rectilinearly moving 
supersonic sources 

The radiation that is discussed in the text has many features in common with that 
emitted by a source of the same type which moves with a supersonic speed along a 
rectilinear path. Although most aspects of the radiation arising from a rectilinearly 
moving source are known (see e.g. Whitham 1974; Dowling & Ffowcs Williams 1983), 
the properties of this radiation in the case where the source is of finite duration do not 
seem to have been discussed in detail before. Here we include an analysis of these 
properties, in both the time and the frequency domains, to emphasize the following two 
points : (i) that cylindrically decaying pulses arise also when a rectilinearly moving 
volume source of arbitrarily short duration approaches the observer - along the 
radiation direction - with the wave speed and zero acceleration at the retarded time, 
and (ii) that the limitation of the frequency-domain analysis, which gives rise to a 
spurious constraint on the Rayleigh parameter (cf. §4), also shows up in the present 
context. Inasmuch as the circular trajectories of the volume elements constituting a 
rotating source can be locally approximated by short-duration rectilinear trajectories, 
the results discussed in this appendix may be regarded as the preliminary versions of 
those reported in $$5 and 6 of the text. 

Suppose that an extended source, that is steady in its own rest frame, moves with a 
constant supersonic speed, u > c, along the z-axis of a Cartesian coordinate system 
(x, y, z )  and has the finite duration 0 < t < T ;  the density for such a source has the 
form 

(A 1) 

i = Z-ut, (A 2) where 
4x3 Y ,  z ,  t> = 4x2 Y ,  4 [O(t) - O(t - T)],  
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FIGURE 5. The domain of dependence of the observation point P for a finite-duration source 
(occupying the dotted space) which moves rectilinearly with the supersonic velocity u. The boundary 
of the domain consists of a section of the inverted Mach cone issuing from P and portions of two 
spheres that are tangent to this cone. Region I of this domain, which is here shown in black, lies within 
the cone but outside the two spheres, and region 11, which is hatched, comprises the union of the two 
spheres less their intersection. 

and O is the Heaviside step function. When we insert (A 1) in the retarded solution ( 3 )  
of the wave equation (1) and change the variables (x, y ,  z ,  t )  to (x, y ,  8, t ) ,  we find that 
the sound generated by such a source is described by 

~ ( x p ,  ~ p ,  2 p  tp) = dx dy d i  4x3 y, 4 GI, (A 3 )  s 
in which the Green's function GI is defined by 

G, = jrdtS(tp-t-R/c)/R, 

with 8, = zp-ut,, and 

R = ( ( ~ - x ~ ) ~ + ( ( y - y ~ ) ~ + [ i - - i ~ + u ( t - t ~ ) ] ~ } ~ .  (A 5 )  

The integral in (A 3 )  extends over all values of (x, y ,  i) for which the source density s 
is non-zero. 

Not unexpectedly, the Green's function appearing in (A 3 )  differs only slightly from 
that encountered in the standard analysis of Mach radiation. Evaluation of the integral 
in (A4) yields 

O[z"-ip-(M2- l)iR,] 
G, = [O( t+ )  + O(tL)  - O(t+ - T )  - O(t -  - 731, (A 6) [(S - i P ) 2  - (M2 - 1) R2,p 

where t ,  - = t,-c-'(M2-- l)-1{M(2-i,)+[(i-i,)2-(M2- 1) R;]:}, (A 7) 

R, = [(x - x p ) 2  + (y - y,)'];, (A 8) 
and A4 = u/c.  The combination of the step functions involving t, - in (A 6) arise from 
the finiteness of the duration of the source. 

For any given observation point (xp, yp, ip), the Green's function G, is non-zero only 
inside a region of (x, y, 2)-space, shown in figure 5 ,  that is bounded by the inverted 
Mach cone 

(A 9) 8 - S p  = (M2- l)tR, 
3 
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and the following two spheres 

(2 - i, - ~t,)' + R: = ~ ' t : ,  

[P - P, - U( t, - T)]' + R2, = c'( t ,  - T)'. 

Within this domain of dependence of the observation point, we have 

1 in region I, 

2 in region 11, 
G, = [(i-z",)z-(M2- 1)R2,lp$ 

where region I lies inside the cone but outside the two spheres, and region I1 consists 
of the union of the two spheres less their intersection (see figure 5). The factor of 2 by 
which the value of G, changes from one region to the other reflects the number of waves 
that are simultaneously received at P from the source points in these regions. 

Let us now consider a far-field observation point, P, for which the inverted Mach 
cone (A 9) intersects the source distribution, and calculate the contribution towards the 
sound at P from those volume elements of the source that lie in the following 
neighbourhood, N ,  of this cone: 

(A 13) R,, d R, d RlC, 

where 

denote the values of R, for the points A ,  B, C shown in figure 5, and the bounds on 
the azimuthal angle y = arctan (y/x) satisfy the constraints 

9, = y ,  + arcsin [(I - M-2)trp1 ctbj, (A 18) 

ql,-y< 4 2n. (A 19) 

The space-time coordinates r ,  = (x:+y:)a and t ,  of the observation point are here 
assumed to be such that the argument of the inverse trigonometric function in (A 18) 
is less than or equal to unity. That is to say, the observation point is assumed to be 
located within a corresponding neighbourhood of the truncated Mach cones in the 
(r,, y,, 2,)-space which issue from the source distribution (cf. the limiting form of 
( A  17) for r = (x2+y2) i  -g r,) 

Neighbourhood N has an extension of the order of cT in r and a thickness of the 
order of cT'/t, in 2; it, therefore, has a vanishing volume in the limit tp+m and so 
is entirely contained within the source distribution when this distribution has a 
lengthscale larger than cT. In order that we may approximate the source density s by 
its average value s within N ,  here we shall only consider a value of cT that is much 
smaller than the lengthscale of variation of the source density. 

Once we replace s in (A 3 )  by the constant S, the integral of G, over neighbourhood 
N can in fact be evaluated exactly. The integration with respect to z" over the interval 
(A 14) yields 

G,  dz" = arccosh x - arctanh M-l+ t ,  + tb, (A 20) s 
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where x = ct,/R,, (A21)  

and tp+ t;. stands for two terms like the ones preceding it in which t ,  is everywhere 
replaced with tlp. The remaining integrals, after a change of variables from (x, y )  to 
(R,,v), can be written as 

r P  cos (v - VP) 
[R: - rk sin2 (v - G, dx dy d i  = 1: dq 11;: dR, R, { 1 - 

x (arccosh x - arctanh M-l) - t ,  ++ tlp, (A  22) 

where (Y,, qP) are the polar coordinates of the projection of the observation point onto 
the (x, y)-plane, and t ,  f+ tlp stands for a set of terms like those already appearing on 
the right-hand side of (A22)  in which t ,  and tlp are everywhere interchanged. 

The integrand of (A22)  can be written as a2F/aplaRI where the primitive F is given 
by 

F(R1,v) = $?tk{[rp-g+ - arcsin (ax)] [Xp2(arccosh x - arctanh M-l) 

- ( 1  - x-');] -ax-'( 1 - a2x2)i(arccosh x - arctanh Mpl) 

++(a2 + 1 )  arcsin [I 1 -a2(-'(a2 + 1 - 2a2x2)] 

+a arcsin [I 1 - a21-l(a2 + 1 - 2 ~ - ~ ) ] } ,  ( A  23) 

with a = rpsin(q-y,)/(ctp). (A 24) 

By evaluating this primitive at the integration limits that appear in (A22) ,  we obtain 

lN GI dx dy d i  = :c2t: [p?, -qp - arcsin (ya:)] i 
arctanhM-') -7":- t;):/(yt,)] 

-a: (y-'aC2 - 1); 

in which 

+$(a; + 1 )  arcsin [(a: + 1 - 2 y 2 a 3 / (  1 -a:)] 

+ M-'[q, -qp - arcsin (ya,)] 

-$(at + 1 )  arcsin [(a: + 1 - 2y2a2,)/( 1 - a:)] 

-a ,  arcsin [(a: - 1 + 2 M 9 / (  1 - (a:)] 

- t, +-+ tlp -v> + p?< 2 ( A  25) 
y (1 - j p - i  A 26) 

( A  27a) 

(A  27 b)  

and y ,  + pl<, stands for a set of terms like those preceding it in which y >  is everywhere 
replaced by v<. 

For arbitrary values of as  and a:, the right-hand side of (A25)  is an analytic 
function of the parameter T / t ,  and can be expanded into a Taylor series to show that 
its value decays like T / t ,  as t ,  + co. This corresponds, according to (A  26), to a sound 
field that decays spherically as t ,  + 00. However, if we set the observation point in the 
neighbourhood of the truncated Mach cones which issue from the source distribution, 
and adopt the expression given in (A 18)  for cp,, then the contribution from v, towards 

3-2 
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the value of (A25) ceases to be analytic in T / t ,  and turns out to possess a series 
expansion only in powers of (Tit,);. The expression adopted for v> in (A 18) renders 
the argument of arcsin (1 - M P - h : ,  which appears in (A 25), equal to unity and so 
represents the maximum value that can be assigned to rp> given the observation point. 

From the expansion of the right-hand side of (A25), as far as terms of the order of 
(T/ t , )3 ,  it now follows that, for t ,  9 T,  the main contribution to the sound comes from 
the boundary p> of N ,  and - to within the constant factor S- has the limiting value 

(A28) G,dxdydP = * ( M - M - ~ ) C ~ T ~ ( T / ~ , ) + +  ..., T / t p  4 1, s, 15 

at observation points that satisfy 

(Note that source distrubution is assumed to be localized about x = y = i = 0.) At 
such observation points, therefore, the amplitude of the radiation decays cylindrically, 
for ct, is - according to (A 29) ~ proportional to r,. 

The part of the source which contributes towards the cylindrically decaying subpulse 
detected at P, i.e. neighbourhood N ,  has a 2-extent Ai  which, as shown by (A 14) and 
(A 17), decreases like T/ t ,  as t ,  increases. The observed width of this subpulse also 
decreases like T / t p  with t,, because the collection of Mach cones issuing from the 
source points in N constitutes a conical shell whose 2,-extent is the same as Ai .  The 
interval of retarded time At during which the subpulse in question is emitted, however, 
significantly differs from the short interval during which it is observed; the emission 
time At equals the entire lifetime of the source, T. If the retarded time t at which a 
source point (x, y ,  z,) on the Mach cone makes its contribution towards the far field is 
to, then it follows from R = c(t, - t )  and (A 5 )  that the corresponding value of t for the 
source point (x, y, Po + Ai  is to +At with c At z M-a (W - l)-i (2R, AS): (Ffowcs 
Williams 1965). Had the extent AP of the contributing source not been a decreasing 
function oft, and so of R,, the emission time interval At would have increased with 
R,, like R$. However, in the present case where At cannot exceed the lifespan of the 
source, T, it is A2 which decreases like Rpl and so renders At equal to T .  The resulting 
subpulse has a width which correspondingly diminishes like Rpl. Thus, the long 
duration of the emission time interval - relative to that of the reception time interval 
- of the subpulse compensates for the slow decay of its amplitude to conserve its total 
energy. 

The volume elements of the source within the lenticular part of the domain of 
dependence of the observation point P (figure 5) radiate cooperatively, over the entire 
lifetime of the source, to produce a coherent cylindrically decaying subpulse at P. The 
corresponding source elements for a neighbouring observation point likewise radiate 
in phase and produce a coherent subpulse, but a subpulse whose phase differs from that 
of the signal detected at P by a position-dependent retardation factor. Because there 
is one such subpulse associated with each observation point whose inverted Mach cone 
intersects the source distribution, the over-all waveform thus consists of an incoherent 
superposition of a (continuous) collection of coherent subpulses. 

There is a cylindrically decaying component to the present radiation because the 
symmetry a/at+ua/az = 0 of the source density s(x, y,P) transfers onto the field 
strength p itself and so reduces the dimension of the wave equation that governs the 
radiation by one: under this symmetry, the wave equation, (l), assumes the form 

(1 - M-2)bp1ctL 5 I. (A 29) 
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For u > c, therefore, the variable ,?/u plays the role of a time-like coordinate, and this 
reduced equation describes waves that propagate with the speed (1 - c2/u2)-;c in the 
(x, y)-space. The wave fronts whose intersections with the (x, y)-plane travel with the 
supersonic speed (1 - c2/u2)-;c are, in fact, those that interfere constructively to form 
the Mach cone. The Mach cone propagates with the speed c in the direction normal to 
itself, but by virtue of being inclined at the angle arccos (c /u)  to a plane z = const., it 
intersects such a plane along a circle that expands supersonically. Thus, the particular 
set of waves whose envelope constitutes the Mach cone, decay cylindrically, like two- 
dimensional waves. 

Next, let us analyse this same problem in the frequency domain. By replacing the 
source density s in (A 3) with its Fourier representation 

s(x,  y, 2) = (27t-l dks"(x, y, k) exp (- ikz"), (A31) l: 
we can write the Fourier transform of the sound waveform p as 

where 

6 = ( 2 ~ ) ~ ~  1 dxdys" ~oTdt~~~d~exp[-ik(f-,?p)]n^(t,-t-R/c)/R, (A32) 

f r n  

6 = sPrn dz", exp (ik.2,) p, 

and use has been made of (A4). Evaluation of the ,?-quadrature in (A 32) now yields 

6 = ( 2 ~ t - I  dx dy s" d t  @(T - RJc) exp (- ikw) s IT 
x (c2? - {exp [ik(c2T2 - R3;] + exp [ - ik(c2T2 - R;);]}, (A 34) 

in which T = t ,  - t. 

this point occurs at 
(A 35) 

So, to obtain the leading contribution to the asymptotic value of p for large k,  we may 
approximate this phase by the following two terms in its Taylor expansion about 
t = t,: 

UT - ( c ~ T ~  - R:); = ( M 2  - 1); R, + $(M2 - 1): Ryl c2(t - t,)2 + . . . , (A 36) 

and replace the amplitude of the integrand in (A 34) by its value at t = t,. Provided that 
the Rayleigh parameter ~ ( c T ) ~ / R ,  satisfies the constraint 

Only the phase of the first term in the integrand of (A 34) has a stationary point, and 

t ,  = t, - M ( M 2  - l)-;R,/c. 

~ ( c T ) ~ / R ,  % ( M 2  - l)", (A 37) 
we may in addition replace the range of integration in (A 34) by (- co, + a). The 
resulting expression, then, is 

6 - (2n)-'(M2 - 1); dx dy r?RT1 exp [ - ik(M2 - 1); R,] s 
x exp [ -+ikc2R11 ( M 2  - l)"t - t J2]  

- (27c-i exp (-+in) cP1(M2 - l)-i k-i dx dy exp [ - ik(M2 - 1); R,]. (A 38) s 
This predicts that when the source occupies a localized region about x = y = 0, i.e. 
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1x1 4 Ixp( land IyI 4 lypl so that R2, z xg+y:, the sound decays cylindrically, like 
(xg+y$)-x. In contrast to the outcome of the time-domain analysis, however, the 
validity of (A 38) is subject to the additional constraint (A 37) on the Rayleigh distance. 

Amongst the source points with a given set of (x, y )  coordinates, the one making the 
cylindrically decaying contribution towards the sound at (xp, y p ,  ip) is that whose 
Lagrangian coordinate P has the value (A9) and whose component of velocity in the 
radiation direction equals the wave speed at the time t, given in (A 35) : this value of 
t also follows from the time-domain analysis when the equation t = t ,  - R/c, which is 
implied by the vanishing of the argument of the delta function in (A4), is solved in 
conjunction with (A 9). According to the frequency-domain analysis, however, the 
strong contribution that is made at the time t = t ,  arises from all those source elements 
that share the coordinates (x,y), i.e. from a line source parallel to the 2-axis, and not 
from a neighbourhood of the single point on such a line source that lies on the inverted 
Mach cone (A9). Just as in 94, therefore, the high-frequency approximation loses the 
information contained in the structure of the caustic (i.e. the Mach cone) along the 
spatial direction which is Fourier-analysed - in this case along P - and effectively treats 
the source as planar. The extra condition on the Rayleigh parameter stems from this 
limitation of the high-frequency approximation in situations where the sources and the 
fields depend on one of the space coordinates and the time in a single combination only 
(as in (A2)), and is - for the reasons that are given at the end of $ 5  - spurious. 

Appendix B. Gradient of the sound field 
Our purpose in this appendix is to find the leading term in the asymptotic expansion, 

for m % 1 and tp 9 1, of the following (regular) part of the gradient of the sound 
amplitude which follows from differentiating (1 5 )  under the integral sign : 

in which 
according to ( 5 )  and (9). We shall calculate this term by means of the method outlined 
in 993 and 4. 

Since, as we have already seen, the leading term in the asymptotic expansion in 
question arises from the filamentary part of the source which moves towards the 
observer at the wave speed with its normal parallel to the radiation direction, we may 
approximate i3g/i3tP by its value at the cusp curve of the bifurcation surface. The angle 
Q, appearing in (B 2) has the value (10) on the bifurcation surface (dg/dp, = 0), and the 
value Q, = pl,+arccos(GlTl) on its cusp curve. For this latter value of and an 
observation point that is located in the far zone, (B2) becomes 

(B 3) 
Inserting (B 3) in (B 1) and comparing the resulting expression with (15), we find, 
therefore, that the asymptotic value of the mth Fourier component of (ap/atp), for 
m-tm differs from the far-field value of the corresponding Fourier component of p 
given by (48) only in that it is multiplied by imsin8,. 

agglat, = ( ~ ~ / c ) - l  [t, - ~ C O S  (9, -Fp)l ,  (B 2) 

i3g/iYp z sin 8,. 
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